26471 measured reflections

 $R_{\rm int} = 0.029$

8379 independent reflections

6612 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{Bis[2-(dicyclohexylphosphino)phenyl]methylsilyl- $\kappa^{3}P$,Si,P'}chloridopalladium(II)

Yong-Hua Li,* Yuan Zhang, Min-Min Zhao and Yu-Yu Yuan

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: liyhnju@hotmail.com

Received 26 August 2008; accepted 10 September 2008

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.060; data-to-parameter ratio = 22.0.

In the title compound, $[Pd(C_{37}H_{55}P_2Si)Cl]$, the Pd atom has a distorted square-planar geometry. The two five-membered rings adopt envelope conformations, while the four cyclohexane rings have chair conformations. The two planar aromatic rings are oriented at a dihedral angle of $28.79 (3)^{\circ}$.

Related literature

For general background, see: Moulton & Shaw (1976); Boom & Milstein (2003). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

$[Pd(C_{37}H_{55}P_2Si)Cl]$ M = 731.60	$V = 3658.3 (15) \text{ Å}^3$
$M_r = 751.09$	$\Sigma = 4$
Monoclinic, $P2_1/c$	Mo K α radiation
a = 13.079 (3) A	$\mu = 0.72 \text{ mm}^{-1}$
b = 16.632 (3) Å	T = 153 (2) K
c = 17.739 (4) Å $\beta = 108.55$ (3)°	$0.49 \times 0.4 \times 0.4 \text{ mm}$

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (CrystalClear, Rigaku, 2005) $T_{\min} = 0.690, T_{\max} = 0.758$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	380 parameters
$vR(F^2) = 0.059$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.83 \text{ e } \text{\AA}^{-3}$
379 reflections	$\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Pd1-P2	2.3132 (6)	P1-Pd1	2.3111 (7)
Pd1-Cl1	2.4584 (6)	Si1-Pd1	2.2829 (6)
Si1-Pd1-P1	83.42 (3)	Si1-Pd1-Cl1	178.18 (4)
Si1-Pd1-P2	83.56 (3)	P1-Pd1-Cl1	94.96 (3)
P1-Pd1-P2	160.56 (4)	P2-Pd1-Cl1	98.21 (3)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the CCD X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2519).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024

Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1271 [doi:10.1107/S1600536808028961]

{Bis[2-(dicyclohexylphosphino)phenyl]methylsilyl- $\kappa^{3}P$,Si,P'}chloridopalladium(II)

Y.-H. Li, Y. Zhang, M.-M. Zhao and Y.-Y. Yuan

Comment

Pincer ligands incorporating two phosphine arms and a central donor site have attracted a substantial amount of interest, since the initial investigations of PCP ligands (Moulton & Shaw, 1976). Several variations of the central donor atom have been explored (Boom & Milstein, 2003). However, the "PSiP" pincer-like transition-metal complexes have rarely been reported. The title compound was obtained during our work on the phosphinoalkylsilyl complexes, and we report herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are generally within normal ranges. The Pd atom has a distorted square geometry (Table 1). Rings A (C2–C7) and D (C20–C25) are, of course, planar, and they are oriented at a dihedral angle of 28.79 (3)°. The six-membered rings B (C8–C13), C (C14–C19), E (C26–C31) and F (C32–C37) are not planar, having total puckering amplitudes, Q_T, of 0.570 (3), 0.580 (3), 0.566 (3) and 0.583 (3) and chair conformations [φ = -16.92 (2)°, θ = 2.08 (3)°; φ = -100.91 (3)°, θ = 1.43 (3)°; φ = -40.78 (2)°, θ = 2.27 (3)° and φ = -155.29 (3)°, θ = 176.23 (4)°, respectively] (Cremer & Pople, 1975), while rings G (Pd1/P1/Si1/C2/C7) and H (Pd1/P2/Si1/C20/C25) adopt envelope conformations, with Si1 and Pd1 atoms displaced by -0.422 (3) and 0.694 (2) Å from the planes of the other ring atoms.

Experimental

Dropwise addition of a solution of $MeSiH(Cy_2PC_6H_4)_2$ (124 mg, 0.21 mmol) in dry THF (5 ml) to a solution of $[Pd(COD)Cl_2]$ (43 mg, 0.21 mmol) in a mixture of THF (7 ml) and NEt₃ (1 ml) resulted in rapid formation of a colorless precipitate. Removal of the volatiles left solid material, which after through washing left the product (yield; 130 mg, 85%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a benzene (5 ml) solution of the title compound (28 mg) after 1 d.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

{Bis[2-(dicyclohexylphosphino)phenyl]methylsilyl- $\kappa^{3}P$,Si,P'}chloridopalladium(II)

Crystal data	
[Pd(C ₃₇ H ₅₅ P ₂ Si)Cl]	$F_{000} = 1536$
$M_r = 731.69$	$D_{\rm x} = 1.328 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 8380 reflections
a = 13.079 (3) Å	$\theta = 2.6 - 27.5^{\circ}$
<i>b</i> = 16.632 (3) Å	$\mu = 0.73 \text{ mm}^{-1}$
c = 17.739 (4) Å	T = 153 (2) K
$\beta = 108.55 \ (3)^{\circ}$	Plate, colourless
$V = 3658.3 (15) \text{ Å}^3$	$0.49\times0.4\times0.4~mm$
Z = 4	

Data collection

Bruker P4 diffractometer	8379 independent reflections
Radiation source: fine-focus sealed tube	6612 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}$
T = 153(2) K	$\theta_{\min} = 1.6^{\circ}$
ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan (CrystalClear, Rigaku, 2005)	$k = -21 \rightarrow 20$
$T_{\min} = 0.690, \ T_{\max} = 0.758$	<i>l</i> = −22→23
26471 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.026$
$wR(F^2) = 0.059$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0286P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 0.93	$(\Delta/\sigma)_{max} = 0.002$
8379 reflections	$\Delta \rho_{max} = 0.83 \text{ e} \text{ Å}^{-3}$
380 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
The second se	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Pd1	0.776955 (11)	0.199184 (8)	0.842716 (8)	0.01619 (5)
Cl1	0.74782 (4)	0.10723 (3)	0.94246 (3)	0.02368 (11)
P1	0.61347 (4)	0.26445 (3)	0.81739 (3)	0.01750 (11)
P2	0.92123 (4)	0.13330 (3)	0.82162 (3)	0.01924 (11)
Si1	0.80048 (4)	0.28746 (3)	0.75107 (3)	0.01937 (12)
C1	0.88282 (17)	0.38076 (11)	0.79094 (12)	0.0281 (5)
Н9	0.9566	0.3659	0.8169	0.042*
H10	0.8547	0.4070	0.8284	0.042*
H11	0.8789	0.4167	0.7478	0.042*
C2	0.66587 (16)	0.33238 (11)	0.69303 (11)	0.0217 (4)
C3	0.64531 (18)	0.37785 (12)	0.62354 (12)	0.0311 (5)
H1	0.6968	0.3798	0.5976	0.037*
C4	0.55014 (19)	0.42001 (12)	0.59254 (13)	0.0355 (5)
H2	0.5373	0.4483	0.5452	0.043*
C5	0.47352 (17)	0.42045 (11)	0.63167 (12)	0.0304 (5)
Н3	0.4108	0.4506	0.6119	0.037*
C6	0.49142 (16)	0.37573 (11)	0.70008 (11)	0.0242 (4)
H4	0.4403	0.3758	0.7264	0.029*
C7	0.58586 (15)	0.33015 (10)	0.73039 (11)	0.0197 (4)
C8	0.58284 (16)	0.32556 (11)	0.89412 (11)	0.0220 (4)
H52	0.5141	0.3530	0.8691	0.026*
С9	0.66938 (17)	0.38988 (11)	0.92582 (12)	0.0264 (5)
H12	0.6735	0.4236	0.8823	0.032*
H13	0.7390	0.3643	0.9490	0.032*
C10	0.64322 (19)	0.44220 (12)	0.98907 (13)	0.0353 (5)
H14	0.7014	0.4802	1.0109	0.042*
H15	0.5779	0.4726	0.9642	0.042*

C11	0.62822 (18)	0.39211 (12)	1.05543 (12)	0.0336 (5)
H16	0.6060	0.4265	1.0916	0.040*
H17	0.6964	0.3674	1.0850	0.040*
C12	0.54384 (19)	0.32688 (13)	1.02360 (13)	0.0355 (5)
H18	0.4739	0.3517	0.9997	0.043*
H19	0.5397	0.2934	1.0673	0.043*
C13	0.57070 (18)	0.27452 (12)	0.96181 (12)	0.0287 (5)
H20	0.6373	0.2456	0.9868	0.034*
H21	0.5138	0.2354	0.9409	0.034*
C14	0.50756 (15)	0.18646 (10)	0.78938 (11)	0.0189 (4)
H53	0.5210	0.1499	0.8348	0.023*
C15	0.52037 (16)	0.13733 (12)	0.72025 (12)	0.0273 (5)
H22	0.5090	0.1720	0.6743	0.033*
H23	0.5933	0.1165	0.7346	0.033*
C16	0.44090 (18)	0.06758 (12)	0.69850 (14)	0.0363 (5)
H24	0.4487	0.0396	0.6527	0.044*
H25	0.4570	0.0299	0.7424	0.044*
C17	0.32561 (17)	0.09697 (12)	0.67967 (14)	0.0359 (5)
H26	0.3070	0.1307	0.6326	0.043*
H27	0.2769	0.0513	0.6687	0.043*
C18	0.31299 (17)	0.14426 (12)	0.74885 (14)	0.0336 (5)
H28	0.3264	0.1094	0.7948	0.040*
H29	0.2397	0.1642	0.7355	0.040*
C19	0.39173 (16)	0.21510(11)	0.76928 (13)	0.0289 (5)
H30	0.3754	0.2517	0.7244	0.035*
H31	0.3830	0.2442	0.8143	0.035*
C20	0.87194 (15)	0.23153 (11)	0.68936 (11)	0.0206 (4)
C21	0.87080 (16)	0.25321 (12)	0.61293 (12)	0.0256 (4)
H5	0.8312	0.2978	0.5884	0.031*
C22	0.92774 (18)	0.20930 (12)	0.57330 (12)	0.0306 (5)
H6	0.9251	0.2240	0.5221	0.037*
C23	0.98812 (18)	0.14409 (13)	0.60931 (13)	0.0327 (5)
H7	1.0272	0.1154	0.5827	0.039*
C24	0.99120 (17)	0.12082 (12)	0.68487 (12)	0.0288 (5)
H8	1.0324	0.0768	0.7091	0.035*
C25	0.93198(15)	0 16385 (11)	0 72491 (11)	0.0216(4)
C26	1 05438 (15)	0 14745 (11)	0.89758 (11)	0.0230(4)
H54	1.0473	0 1279	0.9478	0.028*
C27	1.08270 (16)	0.23684(12)	0.90993(12)	0.0281 (5)
H32	1.0902	0.2590	0.8614	0.034*
H33	1.0244	0.2651	0.9212	0.034*
C28	1.18724 (17)	0.25026 (13)	0.97816 (13)	0.0363 (5)
H34	1.2053	0.3070	0.9815	0.044*
H35	1.1766	0.2346	1.0278	0.044*
C29	1 27954 (18)	0 20260 (14)	0 96696 (14)	0.0410.60
H36	1 3427	0.20200 (11)	1 0135	0.049*
H37	1 2969	0.2235	0.9214	0.049*
C30	1 25193 (17)	0 11356 (14)	0 95408 (14)	0.0399.60
H38	1.2432	0.0910	1.0021	0.048*

H39	1.3108	0.0855	0.9433	0.048*
C31	1.14817 (16)	0.10098 (13)	0.88463 (13)	0.0330 (5)
H40	1.1591	0.1189	0.8357	0.040*
H41	1.1307	0.0441	0.8793	0.040*
C32	0.90634 (15)	0.02306 (10)	0.81022 (12)	0.0215 (4)
H55	0.9589	0.0051	0.7849	0.026*
C33	0.93034 (16)	-0.02350 (11)	0.88812 (12)	0.0251 (4)
H42	1.0016	-0.0096	0.9233	0.030*
H43	0.8780	-0.0097	0.9144	0.030*
C34	0.92479 (17)	-0.11331 (11)	0.86989 (13)	0.0304 (5)
H44	0.9805	-0.1271	0.8468	0.037*
H45	0.9387	-0.1432	0.9191	0.037*
C35	0.81590 (18)	-0.13772 (12)	0.81309 (14)	0.0360 (5)
H46	0.7610	-0.1296	0.8385	0.043*
H47	0.8172	-0.1944	0.8006	0.043*
C36	0.78722 (18)	-0.08883 (12)	0.73637 (13)	0.0348 (5)
H48	0.8361	-0.1028	0.7072	0.042*
H49	0.7146	-0.1022	0.7034	0.042*
C37	0.79441 (16)	0.00105 (11)	0.75349 (12)	0.0272 (5)
H50	0.7398	0.0162	0.7772	0.033*
H51	0.7808	0.0305	0.7041	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.01625 (8)	0.01725 (7)	0.01517 (8)	-0.00036 (6)	0.00515 (6)	0.00109 (6)
Cl1	0.0337 (3)	0.0213 (2)	0.0204 (2)	0.0042 (2)	0.0148 (2)	0.00410 (19)
P1	0.0186 (3)	0.0176 (2)	0.0161 (2)	0.0007 (2)	0.0053 (2)	0.0002 (2)
P2	0.0161 (3)	0.0211 (2)	0.0207 (3)	-0.0011 (2)	0.0061 (2)	0.0003 (2)
Si1	0.0205 (3)	0.0190 (3)	0.0187 (3)	-0.0035 (2)	0.0064 (2)	0.0012 (2)
C1	0.0316 (12)	0.0236 (10)	0.0297 (12)	-0.0045 (9)	0.0107 (10)	-0.0014 (9)
C2	0.0255 (11)	0.0183 (9)	0.0193 (10)	-0.0037 (8)	0.0044 (9)	0.0020 (8)
C3	0.0347 (13)	0.0292 (11)	0.0298 (12)	-0.0027 (10)	0.0109 (10)	0.0082 (9)
C4	0.0419 (14)	0.0309 (12)	0.0272 (12)	-0.0014 (10)	0.0017 (11)	0.0127 (10)
C5	0.0265 (12)	0.0231 (11)	0.0326 (12)	-0.0001 (9)	-0.0036 (10)	0.0058 (9)
C6	0.0231 (11)	0.0189 (10)	0.0267 (11)	-0.0027 (8)	0.0024 (9)	-0.0011 (8)
C7	0.0222 (11)	0.0154 (9)	0.0176 (10)	-0.0031 (8)	0.0011 (8)	-0.0011 (8)
C8	0.0214 (11)	0.0232 (10)	0.0210 (10)	0.0033 (8)	0.0061 (9)	-0.0021 (8)
C9	0.0300 (12)	0.0215 (10)	0.0256 (11)	0.0009 (9)	0.0060 (9)	-0.0022 (9)
C10	0.0425 (14)	0.0274 (11)	0.0311 (13)	0.0017 (10)	0.0050 (11)	-0.0088 (10)
C11	0.0397 (14)	0.0345 (12)	0.0229 (12)	0.0097 (10)	0.0045 (10)	-0.0087 (10)
C12	0.0416 (14)	0.0419 (12)	0.0272 (12)	0.0029 (11)	0.0168 (11)	-0.0060 (10)
C13	0.0358 (13)	0.0292 (11)	0.0238 (11)	-0.0013 (9)	0.0131 (10)	-0.0045 (9)
C14	0.0203 (10)	0.0191 (9)	0.0172 (10)	-0.0016 (8)	0.0057 (8)	0.0019 (8)
C15	0.0273 (12)	0.0290 (11)	0.0277 (12)	-0.0050 (9)	0.0117 (10)	-0.0074 (9)
C16	0.0365 (14)	0.0293 (12)	0.0452 (15)	-0.0061 (10)	0.0159 (12)	-0.0109 (10)
C17	0.0303 (13)	0.0286 (11)	0.0441 (14)	-0.0079 (10)	0.0050 (11)	-0.0037 (10)
C18	0.0215 (12)	0.0310 (12)	0.0491 (15)	-0.0013 (9)	0.0124 (11)	0.0019 (11)

C19	0.0246 (12)	0.0252 (11)	0.0373 (13)	-0.0008 (9)	0.0101 (10)	-0.0024 (9)
C20	0.0188 (10)	0.0222 (9)	0.0209 (10)	-0.0100 (8)	0.0066 (8)	-0.0022 (8)
C21	0.0254 (11)	0.0264 (11)	0.0247 (11)	-0.0108 (9)	0.0076 (9)	0.0001 (9)
C22	0.0366 (13)	0.0384 (12)	0.0207 (11)	-0.0174 (10)	0.0148 (10)	-0.0062 (10)
C23	0.0347 (13)	0.0370 (12)	0.0333 (13)	-0.0086 (10)	0.0204 (11)	-0.0107 (10)
C24	0.0279 (12)	0.0300 (11)	0.0314 (12)	-0.0028 (9)	0.0136 (10)	-0.0031 (9)
C25	0.0188 (10)	0.0242 (10)	0.0224 (11)	-0.0070 (8)	0.0073 (8)	-0.0042 (8)
C26	0.0169 (10)	0.0290 (11)	0.0223 (11)	-0.0028 (8)	0.0052 (8)	0.0017 (9)
C27	0.0244 (12)	0.0331 (11)	0.0254 (11)	-0.0080 (9)	0.0059 (9)	0.0007 (9)
C28	0.0318 (13)	0.0416 (13)	0.0305 (13)	-0.0158 (11)	0.0028 (10)	0.0012 (10)
C29	0.0215 (12)	0.0575 (15)	0.0391 (14)	-0.0117 (11)	0.0029 (10)	0.0053 (12)
C30	0.0193 (12)	0.0512 (15)	0.0452 (15)	0.0008 (10)	0.0045 (11)	0.0044 (12)
C31	0.0185 (11)	0.0411 (12)	0.0384 (13)	0.0007 (10)	0.0077 (10)	0.0019 (11)
C32	0.0179 (10)	0.0189 (9)	0.0288 (11)	0.0020 (8)	0.0090 (9)	-0.0009 (8)
C33	0.0204 (11)	0.0249 (10)	0.0303 (12)	0.0029 (8)	0.0083 (9)	0.0032 (9)
C34	0.0281 (12)	0.0252 (11)	0.0419 (14)	0.0055 (9)	0.0167 (11)	0.0069 (10)
C35	0.0350 (14)	0.0211 (11)	0.0535 (16)	-0.0028 (10)	0.0162 (12)	0.0007 (10)
C36	0.0293 (13)	0.0284 (11)	0.0436 (14)	-0.0053 (10)	0.0073 (11)	-0.0077 (10)
C37	0.0220 (11)	0.0255 (10)	0.0318 (12)	-0.0007 (9)	0.0055 (9)	-0.0004 (9)

Geometric parameters (Å, °)

Pd1—P2	2.3132 (6)	C17—H26	0.9700
Pd1—Cl1	2.4584 (6)	C17—H27	0.9700
P1—Pd1	2.3111 (7)	C18—C19	1.531 (3)
P1-C8	1.8421 (18)	C18—H28	0.9700
P1-C14	1.8468 (19)	C18—H29	0.9700
P2-C26	1.847 (2)	С19—Н30	0.9700
P2—C32	1.8480 (18)	C19—H31	0.9700
Si1—C2	1.888 (2)	C20—C21	1.398 (3)
Si1—C1	1.893 (2)	C20—C25	1.402 (3)
Si1—C20	1.8942 (19)	C21—C22	1.384 (3)
Si1—Pd1	2.2829 (6)	C21—H5	0.9300
С1—Н9	0.9600	C22—C23	1.374 (3)
C1—H10	0.9600	С22—Н6	0.9300
C1—H11	0.9600	C23—C24	1.383 (3)
C2—C3	1.397 (3)	С23—Н7	0.9300
C2—C7	1.406 (2)	C24—C25	1.402 (3)
C3—C4	1.381 (3)	С24—Н8	0.9300
С3—Н1	0.9300	C25—P2	1.8370 (19)
C4—C5	1.389 (3)	C26—C31	1.528 (3)
С4—Н2	0.9300	C26—C27	1.531 (3)
С5—С6	1.378 (3)	C26—H54	0.9800
С5—Н3	0.9300	C27—C28	1.527 (3)
С6—С7	1.403 (3)	С27—Н32	0.9700
С6—Н4	0.9300	С27—Н33	0.9700
C7—P1	1.8307 (19)	C28—C29	1.509 (3)
C8—C13	1.520 (3)	С28—Н34	0.9700
С8—С9	1.529 (3)	С28—Н35	0.9700

C8—H52	0.9800	C29—C30	1.524 (3)
C9—C10	1.542 (3)	С29—Н36	0.9700
С9—Н12	0.9700	С29—Н37	0.9700
С9—Н13	0.9700	C30—C31	1.530 (3)
C10-C11	1.505 (3)	С30—Н38	0.9700
C10—H14	0.9700	С30—Н39	0.9700
C10—H15	0.9700	C31—H40	0.9700
C11—C12	1.522 (3)	C31—H41	0.9700
С11—Н16	0.9700	C32—C33	1.527 (3)
С11—Н17	0.9700	C32—C37	1.534 (3)
C12—C13	1.526 (3)	C32—H55	0.9800
C12—H18	0.9700	C33—C34	1.525 (3)
С12—Н19	0.9700	C33—H42	0.9700
С13—Н20	0.9700	C33—H43	0.9700
C13—H21	0.9700	C34—C35	1.515 (3)
C14—C19	1.518 (3)	C34—H44	0.9700
C14—C15	1.527 (2)	C34—H45	0.9700
C14—H53	0.9800	C35—C36	1.526 (3)
C15—C16	1.523 (3)	С35—Н46	0.9700
С15—Н22	0.9700	С35—Н47	0.9700
С15—Н23	0.9700	C36—C37	1.522 (3)
C16—C17	1.518 (3)	C36—H48	0.9700
C16—H24	0.9700	С36—Н49	0.9700
C16—H25	0.9700	С37—Н50	0.9700
C17—C18	1.510 (3)	C37—H51	0.9700
Si1—Pd1—P1	83.42 (3)	C18—C17—H27	109.6
Si1—Pd1—P2	83.56 (3)	С16—С17—Н27	109.6
P1—Pd1—P2	160.56 (4)	H26—C17—H27	108.1
Si1—Pd1—Cl1	178.18 (4)	C17—C18—C19	110.74 (16)
P1—Pd1—Cl1	94.96 (3)	C17—C18—H28	109.5
P2—Pd1—Cl1	98.21 (3)	C19—C18—H28	109.5
C7—P1—C8	105.23 (9)	С17—С18—Н29	109.5
C7—P1—C14	105.22 (9)	С19—С18—Н29	109.5
C8—P1—C14	105.40 (8)	H28—C18—H29	108.1
C7—P1—Pd1	111.50 (7)	C14—C19—C18	111.10 (16)
C8—P1—Pd1	121.38 (7)	С14—С19—Н30	109.4
C14—P1—Pd1	106.91 (6)	С18—С19—Н30	109.4
C25—P2—C26	108.15 (9)	C14—C19—H31	109.4
C25—P2—C32	102.06 (9)	C18—C19—H31	109.4
C26—P2—C32	104.38 (9)	H30-C19-H31	108.0
C25—P2—Pd1	109.19 (7)	C21—C20—C25	118.34 (17)
C26—P2—Pd1	116.74 (6)	C21—C20—Si1	125.34 (15)
C32—P2—Pd1	115.13 (6)	C25—C20—Si1	116.30 (13)
C2—Si1—C1	101.56 (9)	C22—C21—C20	120.99 (19)
C2—Si1—C20	115.16 (9)	С22—С21—Н5	119.5
C1—Si1—C20	106.97 (8)	C20—C21—H5	119.5
C2—Si1—Pd1	109.23 (6)	C23—C22—C21	120.20 (19)
C1—Si1—Pd1	116.79 (7)	С23—С22—Н6	119.9
C20 Sil D41	107 38 (6)	С21 С22 Н6	110.0

Si1—C1—H9	109.5	C22—C23—C24	120.45 (19)
Si1—C1—H10	109.5	С22—С23—Н7	119.8
H9—C1—H10	109.5	С24—С23—Н7	119.8
Si1—C1—H11	109.5	C23—C24—C25	119.8 (2)
H9—C1—H11	109.5	С23—С24—Н8	120.1
H10-C1-H11	109.5	С25—С24—Н8	120.1
C3—C2—C7	117.83 (18)	C20—C25—C24	120.16 (17)
C3—C2—Si1	125.42 (15)	C20—C25—P2	116.34 (13)
C7—C2—Si1	115.93 (14)	C24—C25—P2	123.40 (15)
C4—C3—C2	121.47 (19)	C31—C26—C27	110.10 (16)
C4—C3—H1	119.3	C31—C26—P2	116.21 (14)
С2—С3—Н1	119.3	C27—C26—P2	110.93 (13)
C3—C4—C5	120.39 (19)	С31—С26—Н54	106.3
C3—C4—H2	119.8	С27—С26—Н54	106.3
С5—С4—Н2	119.8	P2—C26—H54	106.3
C6—C5—C4	119.32 (19)	C28—C27—C26	111.73 (17)
С6—С5—Н3	120.3	С28—С27—Н32	109.3
С4—С5—Н3	120.3	С26—С27—Н32	109.3
C5—C6—C7	120.75 (18)	С28—С27—Н33	109.3
С5—С6—Н4	119.6	С26—С27—Н33	109.3
С7—С6—Н4	119.6	Н32—С27—Н33	107.9
C6—C7—C2	120.12 (17)	C29—C28—C27	111.77 (19)
C6—C7—P1	124.00 (14)	С29—С28—Н34	109.3
C2—C7—P1	115.87 (14)	С27—С28—Н34	109.3
C13—C8—C9	110.58 (17)	С29—С28—Н35	109.3
C13—C8—P1	112.19 (13)	С27—С28—Н35	109.3
C9—C8—P1	110.38 (13)	H34—C28—H35	107.9
С13—С8—Н52	107.8	C28—C29—C30	111.63 (18)
С9—С8—Н52	107.8	С28—С29—Н36	109.3
P1—C8—H52	107.8	С30—С29—Н36	109.3
C8—C9—C10	110.66 (16)	С28—С29—Н37	109.3
C8—C9—H12	109.5	С30—С29—Н37	109.3
С10—С9—Н12	109.5	Н36—С29—Н37	108.0
С8—С9—Н13	109.5	C29—C30—C31	111.15 (19)
С10—С9—Н13	109.5	С29—С30—Н38	109.4
Н12—С9—Н13	108.1	С31—С30—Н38	109.4
C11—C10—C9	111.78 (16)	С29—С30—Н39	109.4
C11—C10—H14	109.3	С31—С30—Н39	109.4
С9—С10—Н14	109.3	H38—C30—H39	108.0
C11—C10—H15	109.3	C26—C31—C30	111.02 (18)
С9—С10—Н15	109.3	C26—C31—H40	109.4
H14—C10—H15	107.9	C30—C31—H40	109.4
C10—C11—C12	111.33 (18)	C26—C31—H41	109.4
C10—C11—H16	109.4	C30—C31—H41	109.4
C12—C11—H16	109.4	H40—C31—H41	108.0
C10—C11—H17	109.4	C33—C32—C37	110.56 (16)
C12—C11—H17	109.4	C33—C32—P2	114.83 (13)
H16—C11—H17	108.0	C37—C32—P2	110.73 (13)
C11—C12—C13	111.58 (17)	С33—С32—Н55	106.7

C11—C12—H18	109.3	С37—С32—Н55	106.7
C13—C12—H18	109.3	Р2—С32—Н55	106.7
С11—С12—Н19	109.3	C34—C33—C32	108.82 (16)
С13—С12—Н19	109.3	С34—С33—Н42	109.9
H18—C12—H19	108.0	С32—С33—Н42	109.9
C8—C13—C12	110.77 (16)	С34—С33—Н43	109.9
C8—C13—H20	109.5	С32—С33—Н43	109.9
C12-C13-H20	109.5	H42—C33—H43	108.3
C8—C13—H21	109.5	C35—C34—C33	112.01 (17)
C12—C13—H21	109.5	С35—С34—Н44	109.2
H20-C13-H21	108.1	С33—С34—Н44	109.2
C19—C14—C15	109.61 (16)	С35—С34—Н45	109.2
C19—C14—P1	116.73 (13)	С33—С34—Н45	109.2
C15-C14-P1	109.12 (12)	H44—C34—H45	107.9
С19—С14—Н53	107.0	C34—C35—C36	111.27 (17)
С15—С14—Н53	107.0	С34—С35—Н46	109.4
P1-C14-H53	107.0	С36—С35—Н46	109.4
C16-C15-C14	111.76 (16)	С34—С35—Н47	109.4
С16—С15—Н22	109.3	С36—С35—Н47	109.4
C14—C15—H22	109.3	H46—C35—H47	108.0
С16—С15—Н23	109.3	C37—C36—C35	111.30 (18)
С14—С15—Н23	109.3	С37—С36—Н48	109.4
H22—C15—H23	107.9	С35—С36—Н48	109.4
C17—C16—C15	111.14 (17)	С37—С36—Н49	109.4
C17—C16—H24	109.4	С35—С36—Н49	109.4
C15—C16—H24	109.4	H48—C36—H49	108.0
C17—C16—H25	109.4	C36—C37—C32	110.54 (16)
C15—C16—H25	109.4	С36—С37—Н50	109.5
H24—C16—H25	108.0	С32—С37—Н50	109.5
C18—C17—C16	110.28 (19)	С36—С37—Н51	109.5
С18—С17—Н26	109.6	С32—С37—Н51	109.5
С16—С17—Н26	109.6	H50—C37—H51	108.1
Si1—Pd1—P2—C25	-21.40 (7)	C3—C4—C5—C6	-2.6 (3)
P1—Pd1—P2—C25	26.82 (9)	C4—C5—C6—C7	0.1 (3)
Cl1—Pd1—P2—C25	159.00 (6)	C5—C6—C7—C2	2.8 (3)
Si1—Pd1—P2—C26	101.61 (7)	C5—C6—C7—P1	-176.37 (15)
P1—Pd1—P2—C26	149.83 (8)	C3—C2—C7—C6	-3.1 (3)
Cl1—Pd1—P2—C26	-77.98 (7)	Si1—C2—C7—C6	167.11 (14)
Si1—Pd1—P2—C32	-135.46 (7)	C3—C2—C7—P1	176.15 (14)
P1—Pd1—P2—C32	-87.24 (9)	Si1—C2—C7—P1	-13.66 (19)
Cl1—Pd1—P2—C32	44.95 (7)	C6—C7—P1—C8	-48.12 (18)
C7—P1—Pd1—Si1	11.09 (6)	C2—C7—P1—C8	132.68 (15)
C8—P1—Pd1—Si1	-113.73 (7)	C6—C7—P1—C14	62.93 (17)
C14—P1—Pd1—Si1	125.58 (6)	C2—C7—P1—C14	-116.27 (15)
C7—P1—Pd1—P2	-37.14 (9)	C6—C7—P1—Pd1	178.46 (14)
C8—P1—Pd1—P2	-161.96 (8)	C2—C7—P1—Pd1	-0.74 (16)
C14—P1—Pd1—P2	77.35 (8)	C13—C8—C9—C10	-56.2 (2)
C7—P1—Pd1—Cl1	-169.74 (6)	P1C8C10	179.03 (13)
C8—P1—Pd1—Cl1	65.44 (7)	C8—C9—C10—C11	55.2 (2)

C14—P1—Pd1—Cl1	-55.25 (6)	C9—C10—C11—C12	-54.3 (2)
C7—P1—C8—C13	163.86 (14)	C10-C11-C12-C13	55.0 (2)
C14—P1—C8—C13	52.94 (16)	C9—C8—C13—C12	57.1 (2)
Pd1—P1—C8—C13	-68.48 (15)	P1-C8-C13-C12	-179.20 (15)
C7—P1—C8—C9	-72.32 (15)	C11—C12—C13—C8	-56.4 (2)
C14—P1—C8—C9	176.75 (13)	C19—C14—C15—C16	-55.6 (2)
Pd1—P1—C8—C9	55.33 (15)	P1-C14-C15-C16	175.45 (15)
C7—P1—C14—C19	-61.00 (16)	C14—C15—C16—C17	56.0 (2)
C8—P1—C14—C19	49.93 (16)	C15—C16—C17—C18	-56.3 (2)
Pd1—P1—C14—C19	-179.66 (13)	C16—C17—C18—C19	57.3 (2)
C7—P1—C14—C15	63.90 (15)	C15-C14-C19-C18	56.5 (2)
C8—P1—C14—C15	174.84 (13)	P1-C14-C19-C18	-178.88 (14)
Pd1—P1—C14—C15	-54.76 (14)	C17—C18—C19—C14	-58.3 (2)
C25—P2—C26—C31	-58.80 (16)	C25—C20—C21—C22	-0.2 (3)
C32—P2—C26—C31	49.33 (16)	Si1—C20—C21—C22	178.54 (15)
Pd1—P2—C26—C31	177.66 (12)	C20—C21—C22—C23	-1.1 (3)
C25—P2—C26—C27	67.95 (14)	C21—C22—C23—C24	1.1 (3)
C32—P2—C26—C27	176.08 (13)	C22—C23—C24—C25	0.3 (3)
Pd1—P2—C26—C27	-55.59 (14)	C21—C20—C25—C24	1.6 (3)
C25—P2—C32—C33	161.75 (14)	Si1—C20—C25—C24	-177.30 (15)
C26—P2—C32—C33	49.19 (15)	C21—C20—C25—P2	-174.99 (14)
Pd1—P2—C32—C33	-80.12 (14)	Si1—C20—C25—P2	6.1 (2)
C25—P2—C32—C37	-72.17 (15)	C23—C24—C25—C20	-1.6 (3)
C26—P2—C32—C37	175.27 (13)	C23—C24—C25—P2	174.71 (15)
Pd1—P2—C32—C37	45.96 (15)	C20—C25—P2—C26	-114.32 (15)
C2—Si1—Pd1—P1	-16.64 (6)	C24—C25—P2—C26	69.22 (18)
C1—Si1—Pd1—P1	97.81 (8)	C20—C25—P2—C32	135.96 (15)
C20—Si1—Pd1—P1	-142.15 (7)	C24—C25—P2—C32	-40.50 (19)
C2—Si1—Pd1—P2	148.89 (6)	C20—C25—P2—Pd1	13.67 (16)
C1—Si1—Pd1—P2	-96.66 (8)	C24—C25—P2—Pd1	-162.79 (15)
C20—Si1—Pd1—P2	23.38 (6)	C31—C26—C27—C28	-55.6 (2)
C1—Si1—C2—C3	67.68 (18)	P2-C26-C27-C28	174.39 (14)
C20—Si1—C2—C3	-47.5 (2)	C26—C27—C28—C29	54.7 (2)
Pd1—Si1—C2—C3	-168.37 (15)	C27—C28—C29—C30	-54.0 (3)
C1—Si1—C2—C7	-101.67 (15)	C28—C29—C30—C31	55.0 (3)
C20—Si1—C2—C7	143.16 (14)	C27—C26—C31—C30	56.5 (2)
Pd1—Si1—C2—C7	22.28 (16)	P2-C26-C31-C30	-176.32 (14)
C2—Si1—C20—C21	36.01 (19)	C29—C30—C31—C26	-56.5 (2)
C1—Si1—C20—C21	-76.01 (18)	C37—C32—C33—C34	58.93 (19)
Pd1—Si1—C20—C21	157.89 (15)	P2-C32-C33-C34	-174.90 (13)
C2—Si1—C20—C25	-145.19 (14)	C32—C33—C34—C35	-57.9 (2)
C1—Si1—C20—C25	102.80 (15)	C33—C34—C35—C36	55.7 (2)
Pd1—Si1—C20—C25	-23.30 (16)	C34—C35—C36—C37	-53.8 (2)
C7—C2—C3—C4	0.6 (3)	C35—C36—C37—C32	55.2 (2)
Si1—C2—C3—C4	-168.58 (16)	C33—C32—C37—C36	-58.4 (2)
C2—C3—C4—C5	2.3 (3)	P2—C32—C37—C36	173.13 (14)

